logo
Y&X Beijing Technology Co., Ltd.
Hakkımızda
Profesyonel ve güvenilir ortağınız.
Y&X Pekin Teknoloji Şirketi, Ltd. profesyonel bir metal madeni kazanma çözümü sağlayıcısıdır.Bakır alanlarında zengin başarılı deneyim biriktirdik, molibden, altın, gümüş, kurşun, çinko, nikel, magnezyum, scheelite ve diğer metal madenleri, kobalt, palladium gibi nadir metal madenleri,Bismut ve fluorit ve fosfor gibi diğer metal olmayan madenlerVe en gelişmiş faydalanma yöntemleri de dahil olmak üzere müşterinin cevher özellikleri ve üretim koşullarına göre özelleştirilmiş faydalanma çözümleri ...
Daha Fazla Bilgi

0

Kurulduğu Yıl

0

Milyon+
Çalışanlar

0

Milyon+
Yıllık Satış
Çin Y&X Beijing Technology Co., Ltd. Yüksek Kalite
Güvenilirlik mührü, kredi kontrolü, RoSH ve tedarikçi yeteneği değerlendirmesi. Şirketin sıkı bir kalite kontrol sistemi ve profesyonel test laboratuvarı var.
Çin Y&X Beijing Technology Co., Ltd. GELİŞİM
İç profesyonel tasarım ekibi ve gelişmiş makine atölyesi. İhtiyacınız olan ürünleri geliştirmek için işbirliği yapabiliriz.
Çin Y&X Beijing Technology Co., Ltd. Üretim
Gelişmiş otomatik makineler, katı bir süreç kontrol sistemi. İhtiyacınızın ötesinde tüm elektrik terminallerini üretebiliriz.
Çin Y&X Beijing Technology Co., Ltd. % 100 Hizmet
Toplu ve özel küçük ambalajlar, FOB, CIF, DDU ve DDP. Tüm endişeleriniz için en iyi çözümü bulmanıza yardım edelim.

Kalite Flotasyon Reaktifleri & Köpük Flotasyon Reaktifleri Üretici

İhtiyaçlarınıza daha iyi uyan ürünler bulun.
Davalar ve Haberler
En Son Sıcak Noktalar
What Is The Method For Extracting Gold From E-waste With An Eco-friendly Gold Extractant And Detecting The Cyanide Concentration?
Gold Recovery from E-Waste Using Eco-Friendly Extraction Reagents I. Pretreatment Steps 1.1 Crushing and Screening Purpose: Increase surface area to facilitate subsequent gold leaching. Operations: ① Use a crusher to break down e-waste (e.g., circuit boards, CPUs, gold fingers) into 0.5–1 mm particles. ② Screen the material to remove oversized or undersized particles, ensuring uniform particle size. ③ Employ magnetic separation to remove ferromagnetic impurities (e.g., iron, nickel). ④ Rinse the crushed material with clean water to eliminate dust and impurities, then air-dry for further use.   1.2 Roasting Treatment (Optional) Purpose: Remove organic materials and break the bonding between metals and plastics. Operations: ① Place the crushed e-waste in a roasting furnace and roast at 500–600°C for 1–2 hours. ② Ensure proper ventilation during roasting to prevent the accumulation of harmful gases. ③ After roasting, allow the waste to cool to room temperature, then perform secondary crushing until the particle size is less than 0.5 mm.   II. Preparation of Eco-Friendly Gold Extraction Agent YX500 Solution 2.1 Preparation of Eco-Friendly Gold Extraction Agent YX500 Solution Reagent: Eco-friendly gold extraction agent YX500. Concentration: Prepare a YX500 solution with a concentration of 0.05%–0.1% (i.e., 0.5–1 g/L). Method: ① Add an appropriate amount of clean water into the mixing tank. ② Slowly add the eco-friendly gold extraction agent YX500 in proportion while continuously stirring until it is completely dissolved. ③ Dosing time: Ensure the operation is completed within 10–20 minutes.   2.2 Alkalinity Adjustment Purpose: Prevent hydrogen cyanide gas volatilization and ensure smooth leaching reaction. Operations: ① Add sodium hydroxide (NaOH) or lime milk to adjust the solution pH to 10–11. ② Use pH test strips or a pH meter to verify the solution's alkalinity reaches the appropriate level.   III. Leaching Process 3.1 Leaching Equipment Equipment: Tower leaching tank or mechanically agitated tank. Temperature: Ambient temperature (20–25°C). If leaching acceleration is required, temperature may be increased to 40–50°C.   3.2 Reagent Addition & Reaction Conditions Dosing sequence: ① First, add sodium hydroxide (NaOH) solution for pH adjustment. ② Then, add the pre-prepared eco-friendly gold extraction agent YX500 solution and start the stirring device. ③ Dosing time: Must be completed within 10–20 minutes. Stirring speed: 200–300 rpm to ensure full contact between materials and solution.   3.3 Leaching Time & Oxidant Usage Leaching time: At ambient temperature: 24–48 hours. At 40–50°C: Can be reduced to 12–24 hours. Oxidant: ① To accelerate gold dissolution, hydrogen peroxide (H₂O₂, 0.1–0.5%) may be added or air may be introduced. ② Addition timing: Synchronized with the YX500 solution dosing and maintained continuously.   IV. Solid-Liquid Separation Filtration and Washing Method: Vacuum filtration or centrifugal separation equipment shall be employed. Operations: ① Filter the leached slurry to separate the gold-bearing solution (pregnant solution) from the residue. ② Wash the residue with dilute alkaline solution (pH 10-11) to recover residual gold elements.   V. Gold Recovery Methods Method 1: Zinc Powder Replacement Process Steps: ① Slowly add zinc powder to the pregnant solution at a ratio of 5-10 g/L. ② Maintain continuous stirring with a reaction time of 2-4 hours. ③ Filter to obtain gold mud.   Method 2: Electrolysis Process Equipment: Stainless steel cathode, graphite or lead anode. Conditions: ① Current density: 1-2 A/dm², Voltage: 2-3 V. ② Electrolysis duration: 6-12 hours. Operations: ① After energizing the electrolytic cell, gold gradually deposits on the cathode. ② Remove the cathode and scrape off the deposited gold mud.   VI. Gold Mud Treatment and Refinement Acid Washing and Smelting Steps: ① Use dilute nitric acid or aqua regia to dissolve impurities, followed by filtration to obtain purified gold mud. ② Place the gold mud in a high-temperature electric furnace for smelting, then cast into gold ingots. Purity: Can reach ≥99.9%.   VII. Waste Liquid Treatment and Environmental Protection Measures Compliant Discharge Testing: Verify cyanide concentration to ensure it remains below 0.2 mg/L. Discharge: After meeting standards, release into wastewater treatment system.   VIII. Safety Precautions ① Ventilation: Maintain adequate ventilation in work areas to prevent hydrogen cyanide gas accumulation. ② Protection: Operators must wear gloves, masks, and protective goggles to ensure safety. ③ First Aid: Prepare amyl nitrite and other antidotes for emergency treatment of cyanide poisoning.       Detection of Cyanide Ion (CN¯) Concentration in Eco-Friendly Gold Extraction Reagents   Testing the cyanide ion (CN¯) concentration in eco-friendly gold extraction agents is a critical step to ensure their safety and effectiveness. The following outlines commonly used detection methods and their key operational points, categorized into two main types: laboratory testing methods and on-site rapid testing methods.   I. Laboratory Precision Detection Methods 1.1 Silver Nitrate Titration (Classical Method) Principle: Cyanide ions react with silver nitrate to form soluble [Ag(CN)₂]¯ complexes, with excess silver ions reacting with an indicator (e.g., silver chromate) to produce a color change. Steps: ① Dilute the sample and add sodium hydroxide (pH >11) to prevent hydrogen cyanide (HCN) volatilization. ② Use silver chromate as an indicator and titrate with standardized silver nitrate solution until the color changes from yellow to orange-red. Scope: Suitable for high cyanide concentrations (>1 mg/L); provides precise results but requires laboratory conditions.   1.2 Spectrophotometry (Isonicotinic Acid-Pyrazolone Method) Principle: In weakly acidic conditions, cyanide reacts with chloramine-T to form cyanogen chloride (CNCl), which then reacts with isonicotinic acid-pyrazolone to produce a colored compound. Quantification is achieved by measuring absorbance at 638 nm. Steps: ① Distill the sample if necessary to remove interferents. ② Add buffer and chromogenic reagents, then measure absorbance using a spectrophotometer. Calculate concentration via a standard curve. Advantage: High sensitivity (detection limit: 0.001 mg/L), ideal for trace-level analysis.   1.3 Ion-Selective Electrode (ISE) Method Principle: A cyanide electrode responds to CN¯ activity, measuring concentration via potential difference. Steps: ① Adjust sample pH to >12 with NaOH to avoid HCN interference. ② Calibrate the electrode, measure potential, and convert to concentration. Advantage: Rapid operation, broad detection range (0.1–1000 mg/L), but requires regular electrode calibration.   II. On-Site Rapid Detection Methods 2.1 Rapid Test Strips Principle: Strips contain chromogenic agents (e.g., picric acid) that change color (yellow to reddish-brown) upon reaction with cyanide ions. Procedure: Immerse the strip in the sample, then compare the color against a reference card for semi-quantitative reading. Features: Highly portable but relatively low accuracy; suitable for emergency screening.   2.2 Portable Cyanide Detectors Principle: Miniaturized spectrophotometric or electrode-based devices (e.g., Hach, Merck). Operation: Direct sample injection with automatic concentration display. Advantage: Combines speed and high precision, ideal for field use in mining areas.   2.3 Pyridine-Barbituric Acid Colorimetry (Simplified) Reagent Kit: Pre-packaged tubes with chromogenic agents; add water sample for colorimetric analysis. Detection Limit: ~0.02 mg/L, suitable for low-cyanide testing in eco-friendly gold extraction agents.   III. Precautions Safety Measures Cyanide is highly toxic! All testing must be conducted in a fume hood to prevent skin contact or inhalation. Waste liquid treatment: Oxidize with sodium hypochlorite (CN¯ + ClO¯ → CNO¯ + Cl¯). Interference Factors Sulfide (S²¯) and heavy metal ions may cause interference. Pre-distillation or masking agents (e.g., EDTA) should be used to eliminate their effects. Method Selection High-precision testing: Laboratory titration or spectrophotometry is preferred. Rapid screening: Test strips or portable devices are more practical.  
What Is The Beneficiation Process For Lead-Zinc Ore?
  Chapter 1: Characteristics of Lead-Zinc Ore Resources and Beneficiation   1.1 Global Resource Distribution Features Main Mineralization Types: Sedimentary Exhalative Deposits (55%) Mississippi Valley-Type Deposits (30%) Volcanogenic Massive Sulfide (VMS) Deposits (15%) Representative Deposits: China's Fankou Deposit (Proven reserves: Pb+Zn >5 million tonnes) Australia's Mount Isa Mine (Average zinc grade: 7.2%) Mineralogical Associations: Intimate PbS-ZnS intergrowth (Particle size distribution: 0.005-2mm) Precious metal associations (Ag content: 50-200g/t, often occurring as argentiferous galena)   1.2 Process Mineralogy Challenges Variable Iron Content in Sphalerite (Fe 2-15%): Impacts flotation behavior due to changes in surface chemistry, High-iron sphalerite (>8% Fe) requires stronger activation Secondary Copper Minerals (e.g., Covellite): Causes copper contamination in zinc concentrates (typically >0.8% Cu), Requires selective depression reagents (e.g., Zn(CN)₄²⁻ complexes) Slime Coating Effects: Becomes significant when -10μm particles exceed 15%, Mitigation methods: ---Dispersion agents (sodium silicate) ---Stage grinding-flotation circuits       Chapter 2: Modern Beneficiation Process Systems 2.1 Standard Selective Flotation Process Grinding and Classification Control ---Primary Closed-Circuit Grinding: Hydrocyclone classification, Circulating load: 120-150% ---Target Fineness: 65-75% passing 74μm, Galena liberation degree: >90% Lead Flotation Circuit ---Reagent Scheme: Reagent Type Dosage (g/t) Mechanism of Action Lime 2000-4000 pH adjustment to 9.5-10.5 Diethyl dithiocarbamate (DTC) 30-50 Selective galena collector MIBC (frother) 15-20 Froth stability control ---Equipment Configuration: JJF-8 Flotation Cells: 4 cells for roughing + 3 cells for cleaning Zinc Activation Control ---CuSO₄ Dosage: 250±50 g/t, Optimized with mixing intensity (power density: 2.5 kW/m³) ---Potential (Eh) Control Range: +150 to +250 mV   2.2 Innovative Bulk Flotation Technology Key Technological Breakthroughs: ---High-efficiency composite collector (AP845 + ammonium dibutyl dithiophosphate, 1:3 ratio) ---Selective depression removal technology (pH adjustment to 7.5±0.5 using Na₂CO₃) Industrial Application Cases: ---Throughput increased by 22% (reaching 4,500 t/d) at an Inner Mongolia mine ---Zinc concentrate grade improved by 3.2 percentage points   2.3 Dense Media Separation-Flotation Combined Process Pre-concentration Subsystem: ---Medium density control (magnetite powder D50=45μm) ---Three-product cyclone (DSM-800 type) separation efficiency Ep=0.03 Economic Analysis: ---When waste rejection rate reaches 35-40%, grinding costs are reduced by 28-32%       Chapter 3: Lead-Zinc Ore Beneficiation Reagents 3.1 Collector Types & Applications (1) Anionic Collectors Reagent Target Mineral Dosage (g/t) pH Range Notable Features Xanthates (e.g., SIPX) ZnS 50-150 7-11 Cost-effective, requires CuSO₄ activation Dithiophosphates (DTP) PbS 20-60 9-11 High Pb selectivity over Zn Fatty acids Oxidized ores 300-800 8-10 Needs dispersants (e.g., Na₂SiO₃) (2) Cationic Collectors Amines (e.g., Dodecylamine): Used in reverse flotation for silicate removal, Dosage: 100-300 g/t, pH 6-8 (3) Amphoteric Collectors Amino-carboxylic acids: Selective for Zn in complex ores, Effective at pH 4-6 (Eh = +200 mV)   3.2 Depressants & Modifiers Reagent Function Dosage (kg/t) Target Impurities Na₂S Zn depression in Pb circuit 0.5-2.0 FeS₂, ZnS ZnSO₄ + CN⁻ Pyrite depression 0.3-1.5 FeS₂ Starch Silicate depression 0.2-0.8 SiO₂ Na₂CO₃ pH modifier (buffer at 9-10) 1.0-3.0 -   3.3 Composite Reagents for Lead-Zinc Ore Beneficiation Composite beneficiation reagents refer to multifunctional reagent systems formed by integrating two or more functional components (collectors, depressants, frothers, etc.) through physical blending or chemical synthesis. Based on their composition, they can be classified into: (1) Physically Blended Type Mechanical mixing of individual reagents (e.g., diethyldithiocarbamate (DTC) + butyl xanthate at a 1:2 ratio) Typical example: LP-01 composite collector (xanthate + thiocarbamate) (2) Chemically Modified Type Molecularly engineered multifunctional reagents Typical examples: Hydroxamic acid-thiol complexes (dual collector-depressant functionality) Zwitterionic polymer depressants       Chapter 4: Key Equipment and Technical Parameters 4.1 Flotation Equipment Selection Guide Roughing Stage: KYF-50 flotation machine (aeration rate: 1.8 m³/m²·min) Cleaning Stage: Flotation column (Jameson Cell, bubble diameter: 0.8-1.2 mm) Comparative Test Data: Conventional mechanical vs. aerated cells: Recovery rate difference of ±3.5% 4.2 Process Control Systems Online Analyzer Configuration: ---Courier SLX (slurry XRF, analysis cycle: 90 s) ---Outotec PSI300 (particle size analysis, error 85%) Reuse Water Standards: ---Heavy metal ion concentrations (Pb²⁺65%) ---Sulfur concentrate production (combined magnetic separation-flotation, S grade >48%) Bulk Utilization Methods: ---Cement additive (15-20% blending ratio) ---Underground backfill material (slump control 18-22 cm)       Chapter 6: Techno-Economic Indicator Comparison 6.1 Typical Concentrator Operating Data Production Cost Structure: Cost Item Proportion (%) Unit Cost (USD/t)* Grinding Media 28-32 1.2-1.5 Flotation Reagents 18-22 0.75-1.05 Energy Consumption 25-28 1.05-1.35 *Note: Currency conversion at 1 CNY ≈ 0.15 USD 6.2 Technological Upgrade Benefits Case Study: 2,000 t/d Concentrator Retrofit Parameter Before Retrofit After Retrofit Improvement Zinc Recovery 82.3% 89.7% +7.4% Reagent Cost 6.8 CNY/t 5.2 CNY/t -23.5% Water Reuse Rate 65% 92% +27%       Chapter 7: Future Technological Development Directions 7.1 Short-Process Separation Technologies Superconducting Magnetic Separation (Background field intensity: 5 Tesla, processing -0.5mm material) Fluidized Bed Separation (Air-dense medium fluidized bed, Ecart Probable Ep=0.05) 7.2 Green Beneficiation Breakthroughs Bio-Reagent Development (e.g., Lipopeptide-based collectors) Zero-Tailings Mine Construction (Comprehensive utilization rate >95%)
Discovery of Tungsten at the Guayabales Copper-Silver-Gold Project in Colombia
Introduction: Collective Mining has made new progress in its drilling campaign at the Guayabales project in Colombia, with the Apollo deposit revealing extensions that could significantly expand the project's potential. Drill hole APC100-D1 intersected 150.5 meters grading 1.46 g/t gold, 18 g/t silver, 0.06% copper, and 0.03% zinc at a depth of 189.2 meters, demonstrating strong mineralization. The company plans to conduct 60,000 meters of drilling next year, its largest-ever program.   According to Mining.com, Collective Mining has achieved new drilling progress at its Guayabales project in Caldas, Colombia, with results that could greatly enhance the project's potential. The company announced that drilling at the Apollo deposit has confirmed extensions of the mineralized body, suggesting possible expansion of the deposit.   Specifically, drill hole APC100-D1 intersected 150.5 meters grading 1.46 g/t gold, 18 g/t silver, 0.06% copper, and 0.03% zinc at a depth of 189.2 meters. Notably, a 42-meter section within this interval returned higher grades of 3.6 g/t gold, 31 g/t silver, 0.09% copper, and 0.05% zinc. This discovery, located northeast of the Apollo deposit boundary, remains closely associated with the main mineralized zone.   Another key drill hole, APC-98D3, also delivered significant results, intersecting 3.6 meters grading 1.29 g/t gold, 15 g/t silver, 0.02% copper, and 0.25% zinc at a shallow depth of 1.5 meters. At 335.5 meters, the hole encountered 24.1 meters grading 2.95 g/t gold, 29 g/t silver, 0.08% copper, and 0.27% zinc. Additionally, at 404.2 meters, it intersected 16.5 meters grading 2.08 g/t gold, 20 g/t silver, 0.07% copper, and 0.06% zinc.   Ari Sussman, Executive Chairman of Collective Mining, stated, "The Apollo deposit continues to grow in size with robust mineralization." He explained that APC100-D1 confirmed earlier assumptions about poor mineralization in shallow outcrops and breccia zones but indicated that deeper sections may host larger and higher-grade mineralization. These results reflect the efforts of five drill rigs and form part of the company’s 40,000-meter 2023 drilling program.   In October, the company discovered the Ramp deposit west of APC100-D1, where three rigs are now operating. Collective plans to execute a 60,000-meter drilling program next year, its largest to date. So far, the company has completed 101,000 meters of drilling at Guayabales, with 67,000 meters focused on Apollo.   Currently, samples from 25 drill holes are undergoing analysis, with full results expected by year-end. The Guayabales project is adjacent to the Pan-American Highway and near Aris Mining’s Marmato gold mine. Collective’s drilling success not only enhances its own exploration prospects but also contributes to Colombia’s mining sector growth. As drilling continues, the project’s full potential may be further validated.   Collective Mining’s achievements at Guayabales have positively impacted its exploration outlook while injecting new vitality into Colombia’s mining industry. With further drilling, the project’s significant potential could be fully unlocked.       Source of article: https://www.china-mcc.com/news_show-8629.html

2025

07/01

Suudi Arabistan ABD ile Maden İşbirliği Anlaşması imzalayacak
Mining.com tarafından bildirildi.Suudi Arabistan Salı günü ABD ile madencilik işbirliği anlaşması için müzakereler yapacağını açıkladı. Suudi Basın Ajansı (SPA) 'ya göre, Taht Prensi Mohammed bin Salman'ın liderliğindeki Kabine,Endüstri ve Madencilik Kaynakları Bakanlığı'na ABD ile bir anlaşma belgesinin taslağını hazırlamaya yetki verdi.SS yetkilileri. Kabine, ABD Enerji Bakanlığı ile imzalanmak üzere önerilen anlaşmanın,maden kaynakları ve madencilik işbirliği. Bu hareket, Suudi Arabistan'ın küresel bir merkez haline gelme hırsına uygun olarakBatarya ve elektrikli araç üretimi (EV).2030 vizyonuEkonomik çeşitlilik stratejisi, Krallık petrol bağımlılığını azaltmak için madencilik ve sanayiye büyük miktarda yatırım yapıyor. Suudi Sanayi ve Maden Kaynakları Bakanı Bandar bin Ibrahim Alkhorayef,hammaddeler ithalve pil üretimi için hem yerli hem de uluslararası metaller kullanıyorlar. Buna ek olarak Suudi Arabistan, Türkiye'de varlığını genişletmeye çalışıyor.küresel madencilik piyasasıOcak ayında Suudi yetkililer Şili'nin devlet şirketi ile ön görüşmeler yaptılar.CodelcoKrallık, Çili'den yerel işleme yönelik bakır ithalatını artırmayı da planlıyor. Geç.Manara Minerals Investment Co.Ülke, stratejik yurtdışındaki yatırımlar yapıyor. 2023'te Manara,Vale'nin temel metaller işinde %10 hissesiBrezilya madencilik devi'nin 26 milyar dolarlık bir bölümü. Şu anda Suudi Arabistan yaklaşık365Yılda 1000 ton bakırBu rakamın 2035 yılına kadar iki katından fazla artacağı, taleplerin çoğunun ithalat yoluyla karşılanması bekleniyor.Altın, gümüş, bakır, teneke, volfram, nikel, çinko, fosfatlar ve boksit. Suudi Arabistan da araştırma yapıyor.Derin deniz madenciliğiKızıldeniz'de, çıkarılan madenleri Yanbu Sanayi Şehri'nde işleme koymayı planlıyor. Enerji ve Maden Kaynakları Bakanlığı'na göre, ülke1270 değerli taş alanı ve 1.170 diğer maden yataklarıAraştırma ve madencilik lisanslarının sayısı artıyor.     Kaynak: https://geoglobal.mnr.gov.cn/zx/kczygl/zcdt/202505/t20250508_9327604.htm

2025

06/03

ABD, iki Afrika ülkesiyle maden anlaşması imzalamaya çalışıyor
Reuters'e atıfta bulunarak Mining.com tarafından bildirildi.ABD, iki ay içinde her iki ülkeyle ayrı maden anlaşmaları imzalamayı amaçlayan Kongo Demokratik Cumhuriyeti (DRC) ve Ruanda arasındaki barış görüşmelerini aktif olarak kolaylaştırıyor. Bu girişim,Massad BoulosEski Başkan Donald Trump'ın Afrika danışmanı,İkili maden anlaşmalarıBu, bölgeye milyarlarca dolarlık Batı yatırımını açtırabilir. "DRC ile yapılan anlaşma, büyüklüğü ve daha fazla kaynağı göz önüne alındığında daha büyük olacak, ancak Ruanda'nın madencilik alanında önemli kaynakları, yetenekleri ve potansiyeli de var".Boulos Reuters'a söyledi. Şu anda,Kongo Demokratik Cumhuriyeti, dünyanın en büyük kobalt üreticisi ve Afrika'nın en büyük bakır tedarikçisi, aynı zamanda neredeyseKüresel tantal üretiminin %70'iDoğu bölgesinde büyük miktardaTungsten, tencere ve niobium-tantalyum cevherleri. On yıllardır, Kongo Demokratik Cumhuriyeti ve Ruanda arasındaki gerginliklerEtnik çatışmalar ve doğal kaynakların kontrolü için rekabetBu yılın başlarında çatışmalarM23 isyancı grubuDRC'nin doğusunda, stratejik madencilik merkezi de dahil olmak üzere bazı bölgelere saldırdı ve ele geçirdi.Walikale. ABD aracılığıyla yapılan barış sürecinin bir parçası olarak, her iki ülkenin de barış anlaşmalarının taslağını2 MayısABD Dışişleri BakanıMarco Rubio, DRC ve Ruanda dışişleri bakanlarıyla birlikte görüşmelere katılacak. Boulos, kilit sorunların çözülmesinin kritik olduğunu vurguladı:Ruanda askerlerini geri çekmeli ve M23'e destek vermeyi bırakmalı.,Kongo, Ruanda'nın silahlı gruplarla ilgili endişelerini ele almalıTıpkıDemokratik Ruanda Kurtuluş Güçleri (FDLR). Açok uluslu gözetim komitesiABD, Katar, Fransa ve Togo da dahil olmak üzere, barış sürecini izliyor.   Kaynak:https://geoglobal.mnr.gov.cn/zx/kczygl/zcdt/202505/t20250507_9326167.htm

2025

06/03